THERMAL ANALYSIS OF INOCULATED GREY CAST IRONS

Mihai CHISAMERA, Stelian STAN, Iulian RIPOSAN, Eduard STEFAN, George COSTACHE
Politehnica University of Bucharest
e-mail: riposan@foundry.pub.ro

ABSTRACT

A research was done to investigate the effect of 0.05...0.25wt.% addition rate of Ca, Zr – Al – FeSi alloy, in ladle and in-mould inoculation of grey cast irons. In the present paper, the conclusions drawn are based on thermal analysis. For solidification pattern, some specific cooling curves characteristics, such as undercooling degree at the beginning of eutectic solidification and at the end of solidification, as well as recalescence level, were identified to be more influenced by the inoculation technique. In order to secure stable and controlled processes, representative thermal analysis parameters could be used, especially in thin wall grey iron casting production.

KEYWORDS: Thermal Analysis, Grey Cast Irons, Inoculation, In-mould Inoculation, Ladle Inoculation

1. Introduction

Inoculation has a vital role to play in the continuing progress of cast iron. The objectives of various additions to the iron melt are to control the graphite size and shape, to promote A-type flakes instead of fine under-cooled forms (D-type graphite), to obtain freedom from chill in thin sections, to promote uniformity throughout different sections sizes, to improve machinability and mechanical properties, etc.

The development of inoculants started by the control of calcium and aluminium in ferrosilicon and continued by addition of other active/inoculating elements, such as Sr, Ba, Zr, Ce, etc. Inoculation techniques were also continuously improved, in order to increase efficiency and to reduce the inoculant consumption, to avoid the fading, etc [1, 2].

The chemistry of the base iron and the treatment alloys are very important in controlling the structure formation at lower eutectic undercooling conditions. It was found that Mn and S, strong deoxidizing elements (Al and Zr) and inoculating elements (Ca, Sr, Ba, RE etc.) have a key role in complex (Mn, X)S compounds formation, which act as the major nucleation sites for graphite in grey cast irons [3-7].

Recently, the thermal analysis became an important tool to reflect the solidification behavior of cast irons. The cooling curve itself, as well as its derivatives and related temperatures and calculated parameters are patterns that can be used to predict the characteristics of irons. On the other hand, the use of thermal analysis can help assess the inoculation requirements for the melt [7-13].

The current experimental investigation in this paper was designed to estimate the cooling curves parameters of low sulphur (0.025%S), low residual aluminium (0.003%Al), hypo-eutectic grey irons (3.5-3.6%CE), subjected to in-mould and in-ladle inoculation by the same type of inoculant (Zr, Ca, Al - FeSi) added at various rates (0...0.25wt.%).

2. Experimental Procedure

Table 1 shows the representative experimental procedure parameters. The charge was melted in a graphite crucible medium frequency induction furnace, mainly as a synthetic pig iron contribution, to ensure a low level of trace elements. It was obtained a relative low carbon equivalent, hypo-eutectic base cast iron (CE = 3.55%), at low content of sulphur (0.025%S) and residual aluminium (0.003%Al), too.

Thermal analysis was used to estimate and quantify nucleation characteristics of different inoculated irons. The thermal analysis was carried out using shell sand Quick-Cups, with a modulus of approximately 0.75cm (30 mm diameter bar.
equivalent). The cooling curve and its first derivative were considered for un-inoculated and inoculated irons, at different inoculant addition rates.

Table 1. Experimental Procedure Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. MELTING</td>
<td></td>
</tr>
<tr>
<td>1.1. Melting Furnace</td>
<td>Graphite Crucible Induction Furnace, 10Kg, 8000Hz</td>
</tr>
<tr>
<td>1.2. Metallic Charge:</td>
<td></td>
</tr>
<tr>
<td>- Synthetic Pig Iron (94%)</td>
<td>3.48%C, 1.72%Si, 0.50%Mn, 0.12%P, 0.025%S, 4.03%CE</td>
</tr>
<tr>
<td>- Steel Scrap (6%)</td>
<td>0.2%C, 0.3%Si, 0.50%Mn, 0.03%P, 0.03%S</td>
</tr>
<tr>
<td>1.3. Base Metal</td>
<td>3.02%C, 1.65%Si, 0.49%Mn, 0.11%P, 0.025%S, 0.0026%Al, 0.006%Ti, 0.042%Cr, 0.0078%Mo, 0.028%Ni, 0.044%Cu</td>
</tr>
<tr>
<td>II. INOCULATION</td>
<td></td>
</tr>
<tr>
<td>2.1. Inoculant - System</td>
<td>Ca, Zr, Al-FeSi, 0.2-0.7mm size</td>
</tr>
<tr>
<td>2.1. Inoculant - Chemistry</td>
<td>75%Si, 2.2%Ca, 1.5%Zr, 1.2%Al, Fe bal.</td>
</tr>
<tr>
<td>2.1. Inoculant - Additional Rate</td>
<td>0.05, 0.10, 0.15, 0.20 and 0.25wt.%</td>
</tr>
<tr>
<td>2.2. Inoculation Technique</td>
<td>Quick-Cups [Thermal Analysis System]</td>
</tr>
<tr>
<td>- In-Mould</td>
<td></td>
</tr>
<tr>
<td>- Ladle</td>
<td>Ladle addition, after tapping</td>
</tr>
<tr>
<td>III. TEST</td>
<td></td>
</tr>
<tr>
<td>Cooling Curve Analysis</td>
<td>Shell Sand Cup, 0.75cm Cooling Modulus</td>
</tr>
</tbody>
</table>

A complex inoculant in Ca,Zr,Al – FeSi system was used, at various addition rates (0...0.25wt.%). Two inoculation techniques were applied, in – mould (M) and in – ladle (L) alloy addition, as representative for high performance grey cast iron production. In the first experimental program, Zr, Ca, Al - FeSi alloy was employed at 0.05%, 0.10%, 0.15%, 0.20% and 0.25% levels, into the shell sand cup. In the second program, a ladle inoculation was applied with the same prescribed amount of alloy, which was added in the in-mould/cup tests.

3. Results and Discussion

Figure 1 shows the aspect of a typical cooling curve and its first derivative for a hypoeutectic grey iron (CE < 4.3%).

The signification of the most important events and parameters on these curves is included in Table 2 [7-13].

![Fig. 1 Typical cooling curve and its first derivative.](image-url)
<table>
<thead>
<tr>
<th>Param. (Fig. 1)</th>
<th>Signification</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Tst | Stable (graphite) eutectic equilibrium temperature | *Theoretical temperature for C to precipitate as graphite
*It should be as high as possible \[Tst = 1153 + 6.3 \ (%Si)\] |
| Tmst | Metastable (white) eutectic equilibrium temperature | *Temperature when C is chemically combined with iron \(\text{Fe}_3\text{C}\)
*It should be as low as possible \[Tmst = 1147 - 12 \ (%Si)\] |
| \(\Delta Ts\) | Range of equilibrium eutectic temperature \[\Delta Ts = Tst - Tmst\] | *\(\Delta Ts\) should be as large as possible
*Favourable elements: Si, Ni, Cu, Co, Al |
| TAL | Liquid temperature commences solid precipitation, as pro-eutectic austenite | *First arrest temperature (no recalescence has occurred)
*The first derivative is zero
*TAL should have a well-defined plateau, 2-10 sec
*TAL can sometimes be reduced by inoculation |
| TSEF | Temperature of the start of eutectic freezing (nucleation) | *Derivative has a minimum, between TAL and TEU, grey iron.
*It should not be too deep |
| TEU | Lowest eutectic temperature | *The minimal point from which the temperature is increasing
*The first derivative is zero
*Inoculation increases TEU \[TEU, \text{about} 25^\circ \text{C above} \ Tmst\] |
| TER | Highest eutectic temperature | *The maximum temperature after the increase in temperature
*The first derivative is zero
*High cooling rates may not achieve this temperature |
| \(\Delta Tm\) | Conventional eutectic undercooling degree \[\Delta Tm = Tst - TEU\] | *Comparing to graphite eutectic temperature \(Tst\)
*The maximum eutectic undercooling
*A high undercooling means:
-D-graphite might develop
-More austenite, risk of macro-shrinkage and outer sunk
-Free carbides (chill) if \(\Delta Tm > \Delta Ts\)
*Higher the \(\Delta Tm\) of base iron, the higher the need for inoculation: base iron, \(\Delta Tm = 20...35^\circ \text{C}\), as normal value
*Inoculation reduces eutectic undercooling |
| \(\Delta T_1\) | Undercooling comparing to Tmst \[\Delta T_1 = TEU - Tmst\] | *Beginning of eutectic reaction
*Carbides (chill), if \(\Delta T_1 < 0 \ [TEU < Tmst]\)
*Undercooled graphite \(\text{D-type}\) if \(\Delta T_1 > 0 \ [TEU \text{ close to} \ Tmst]\)
*Inoculation increases \(\Delta T_1\) parameter \[\Delta T_1 > +20^\circ \text{C normally}\] |
| \(\Delta T_2\) | Undercooling comparing to Tmst \[\Delta T_2 = TER - Tmst\] | *End of eutectic reaction, no white iron if \(\Delta T_2 > 0\)
*Higher \(\Delta T_2\), lower incidence of \(\text{D-type}\) graphite
*Inoculation increases \(\Delta T_2\), at lower power comparing to \(\Delta T_1\) |
| \(\Delta T_r\) | Recalescence Degree \[\Delta T_r = TER - TEU\] | *It reflects the amount of austenite and graphite that are precipitated during the first part of eutectic freezing
*Too high recalescence might be harmful, in soft moulds
*Ideal values depend on the type of mould and the casting modulus: \(\Delta T_r = 2...5^\circ \text{C}\), as a guideline
*Inoculation normally reduces recalescence |
| TES | Temperature of the end of solidification \(\text{solidus}\) | *All metal has solidified
*Lowest value of the negative peak on the first derivative
*Lower (TES), higher sensitiveness to contraction defects |
| \(\Delta T_3\) | Undercooling at the end of solidification \[\Delta T_3 = TES - Tmst\] | *Usually at negative values, as \(TES < Tmst\)
*Intercellular carbides, inverse chill and micro-shrinkage occurrence, especially if \(\Delta T_3 > 20^\circ \text{C}\) (more negative)
*Inoculation normally decreases \(\Delta T_3\) and the incidence of contraction defects |
| FDES | The depth of the first derivative at solidus | *The depth of the negative peak
*It should be less than -3.5 (i.e. deeper) for grey irons (high amount of graphite at the end of solidification)
*Inoculation normally has a positive influence |
| TEM | Maximum recalescence rate | *Maximum value of the first derivative between TEU and TER |

There are many elements which individually have favourable or unfavourable influence on the equilibrium temperatures in stable \(Tst\) and metastable \(Tmst\) systems (Table 3). Silicon appears to be the most important influencing element in un-alloyed irons especially at very low content of trace elements \[Tst = 1153 + 6.7 \ (%Si); Tmst = 1147 - 12 \ (%Si)\] \[8,9\].
Table 4 includes the most important experimental parameters, as thermal analysis data, while Figures 2 and 3 illustrate the effects of the two major influences, i.e. the inoculation technique (in-mould/cup and ladle inoculation) and the inoculant addition rate (0…0.25wt.% alloy), respectively.

Table 3. Favourable and Un-Favourable Elements as ΔTs = Tst - Tmst Influence

<table>
<thead>
<tr>
<th>Equilibrium Temperature</th>
<th>Favourable Elements</th>
<th>Un-Favourable Elements</th>
<th>Action</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tst</td>
<td>Si, Ni, Cu, Co, Al, Pt</td>
<td>Cr, V, Ti, Mn, Mo, Sn, Sb, W, Mg, P</td>
<td>increase Tst</td>
<td>decrease Tst</td>
</tr>
<tr>
<td>Tmst</td>
<td>Si, Ni, Cu, Co, Mn, Sn, Sb, W, Mg, P</td>
<td>Cr, V, Ti, Al, Pt</td>
<td>decrease Tmst</td>
<td>increase Tmst</td>
</tr>
</tbody>
</table>

Table 4. Thermal Analysis-Representative Parameters

<table>
<thead>
<tr>
<th>Inoculation</th>
<th>Addition (wt. %)</th>
<th>Type</th>
<th>TEU (°C)</th>
<th>TER (°C)</th>
<th>TES (°C)</th>
<th>ΔTm = Tst – TEU (°C)</th>
<th>ΔT1 = TEU - Tmst (°C)</th>
<th>ΔT2 = TER - Tmst (°C)</th>
<th>ΔT1 = TES - Tmst (°C)</th>
<th>ΔTr = TER - TEU (°C)</th>
<th>FDES (°C/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-inoculated</td>
<td>0.05</td>
<td>M</td>
<td>1124.7</td>
<td>1125.1</td>
<td>1100.2</td>
<td>38.9</td>
<td>-3.3</td>
<td>-2.9</td>
<td>-27.8</td>
<td>-</td>
<td>-2.3</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1122.8</td>
<td>1125.2</td>
<td>1089.9</td>
<td>40.8</td>
<td>-5.2</td>
<td>13.9</td>
<td>9</td>
<td>UD</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>M</td>
<td>1132.5</td>
<td>1141.5</td>
<td>1094.4</td>
<td>36.2</td>
<td>0.8</td>
<td>7.8</td>
<td>-32.7</td>
<td>7</td>
<td>-2.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1123.6</td>
<td>1127.3</td>
<td>1093.9</td>
<td>40.2</td>
<td>-4.0</td>
<td>13.9</td>
<td>9</td>
<td>UD</td>
<td>-3.13</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>M</td>
<td>1135.4</td>
<td>1140.6</td>
<td>1107.2</td>
<td>28.9</td>
<td>8.7</td>
<td>13.0</td>
<td>-19.5</td>
<td>5</td>
<td>-3.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1130.1</td>
<td>1137.6</td>
<td>1097.4</td>
<td>34.2</td>
<td>3.4</td>
<td>10.9</td>
<td>-29.3</td>
<td>8</td>
<td>-2.88</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>M</td>
<td>1135.3</td>
<td>1140.1</td>
<td>1104.1</td>
<td>29.3</td>
<td>9.1</td>
<td>13.9</td>
<td>-22.1</td>
<td>5</td>
<td>-2.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1132.8</td>
<td>1139.1</td>
<td>1101.2</td>
<td>31.8</td>
<td>6.6</td>
<td>12.9</td>
<td>-25.0</td>
<td>6</td>
<td>-3.22</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>M</td>
<td>1136.4</td>
<td>1140.2</td>
<td>1105.1</td>
<td>28.4</td>
<td>10.6</td>
<td>14.4</td>
<td>-20.7</td>
<td>4</td>
<td>-3.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1133.2</td>
<td>1138.8</td>
<td>1100.8</td>
<td>31.6</td>
<td>7.4</td>
<td>13.0</td>
<td>-25.0</td>
<td>6</td>
<td>-3.45</td>
<td></td>
</tr>
</tbody>
</table>

*M-In-mould/cup inoculation; L-ladle inoculation.

The most pronounced effect of inoculation is that the temperatures of eutectic undercooling (TEU) and graphite recalcenece (TER) are increased. When TEU is reached, the generated heat from released specific heat and latent heat (from the first austenite dendritic solidification and latent heat from the start of eutectic freezing) just balance the heat losses. The eutectic reaction then occurs and the released energy causes the temperature to rise until TER is reached. Un-inoculated irons are characterized by low TEU and TER temperatures.

Although inoculation increases both of these temperatures, the amount of the increase is dependent on the inoculant addition rate and inoculation technique. TER level is stabilized in a shorter time comparing to TEU level, as inoculant addition rate increases, especially for in-mould/cup treatment. Conventionally, undercooling is defined with reference to the graphic equilibrium eutectic temperature (Tst), as ΔTm = Tst - TEU. If TEU is closed to white eutectic temperature but above it (TEU > Tmst) then undercooled graphite might develop. Free carbides occurrence is typical for TEU < Tmst condition. The importance of the position of the start of eutectic reaction (TEU) comparing to metastable (white) eutectic temperature (Tmst) is revealed by ΔT1 = TEU – Tmst. For the end of eutectic reaction temperature, ΔT2 = TER – Tmst parameter was introduced.

The efficiency of inoculation is measured by its ability to decrease the ΔTm level and to increase the ΔT1 and ΔT2 levels, respectively (Table 4, Figure 2).

In all cases, the in-mould/cup inoculation is clearly more effective compared to ladle inoculation, represented by variation of the ΔT1 and ΔT2 parameters. In both experimental programs, the un-inoculated irons start and end the eutectic reaction temperature, from the metastable (white) eutectic temperature. In mould/cup inoculation appears to be more efficient compared to ladle inoculation at low inoculant addition rates, such as 0.05–0.10wt.% level. No big difference in efficiency from the inoculation technique was found for more than 0.20wt.% alloy addition rate. Generally, the efficiency of 0.05–0.15wt.% alloy for in-mould/cup inoculation is comparable to or better than 0.15–0.25wt.% additions in ladle inoculation procedures.
The difference between un-inoculated and inoculated irons is strongly affected by the alloy addition rate, much more for ladle inoculation as the lowest eutectic temperature (TEU) shows (Fig. 3). Late inoculation technique is consistently at higher efficiency for the entire range of inoculant additions, but especially at lower levels (less than 0.20wt.%). Late inoculation technique is characterized by lower eutectic undercooling degree (ΔTm) and higher inoculation index (I₂) level, respectively (Fig. 4).

In many cases, graphitic recalescence (ΔTr = TER - TEU) is also an important parameter to evaluate the
behavior of inoculated irons. It is a function of the amount of austenite and graphite that are precipitated during the first part of eutectic freezing. The higher is recalescence, the higher is the probability for micro-shrinkage and porosity occurrence, especially in soft moulds media, such as green sand moulds (high metal volume expansion). Figure 2 shows the evolution of the level of recalescence (ΔTr), as inoculant addition rates increase. A peculiar difference appears in the behavior of in-mould/cup and ladle inoculated irons. At no more than 0.1wt.% alloy addition, high recalescence level characterizes the in-mould treated irons especially due to the higher TER temperature. An opposite result was obtained for these two inoculation techniques at more than 0.10wt.% alloy addition rate, when higher recalescence was typical for ladle inoculated irons. Lower differences were obtained between the two techniques for more than 0.20wt.% inoculant.

White iron solidification as intercellular carbides or/inverse chill formation is also dependent on the position of the temperature of the end of solidification (TES), compared to the metastable (white) eutectic temperature (Tmst). Figure 2 illustrates the evolution of the TES, its position given Tmst (ΔT1 = TES - Tmst), as the inoculant addition rate increases. Because this difference (ΔT3 parameter) is generally more than 20°C, these irons will be sensitive to chill tendency and micro-shrinkage formation.

Beneficial end of solidification means high solidus temperature and low level of the ΔT3 parameter (usually at low negative value, as TES < Tmst in the most of cases). A low value of FDES (more negative level) is also favourable as it is correlated to a high amount of graphite at the end of freezing. Increasing of the alloy addition rate improves the behavior of irons at the end of solidification but in a different manner for in mould/cup and ladle inoculation methods. 0.10-0.20wt.% inoculant stabilizes the representative solidification parameters at a favourable level for in mould/cup inoculation comparing to 0.20-0.25wt.%, for ladle inoculation.

4. Conclusions

*The present study clearly indicates that thermal analysis methodology can be very successfully used to optimize and control the complicated cast iron solidification processes;
*Eutectic undercooling degree of the electrically melted base iron having 0.025%S, 0.003%Al and 3.5%CE is excessively high (39-40°C), generating a relatively high need for inoculation;

*Under these conditions, the in-mould inoculation had a significant effect compared to ladle inoculation, inclusively at lower inoculant usage (less than 0.20wt.%);
*Lower levels of eutectic undercooling (ΔTm), recalescence (ΔTr) and the undercooling at the end of solidification (ΔT3) are characteristic for in-mould treatment at lower inoculant addition rates;
*The difference between un-inoculated and inoculated irons is strongly affected by the alloy addition rate, much more so for ladle inoculation.
*Generally, the efficiency of 0.05-0.15wt.% alloy for in-mould inoculation is comparable to or better than 0.15-0.25wt.% addition in ladle inoculation procedures;
*The Ca,Zr,Al-FeSi alloy appears to be efficient in low S, low Al, low CE hypo-eutectic grey cast irons, especially for late inoculation.

References